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Plan for today

 Why should we care about adversarial learning?

 Adversarial attack approaches

* Poisoning

e Evasion: Fast Gradient Sign Method (FGSM)

» Case study: adversarial examples in self-driving
 Adversarial defense approaches

* Building trustworthy models
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Adversarial examples

 Adversarial examples: inputs that are specially

made by adding small perturbation to original
iInputs to fool classifiers

Ding Zhao | CMU
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small perturbation

At OpenAl, we think adversarial examples are a good
aspect of security to work on because they represent a
concrete problem in Al safety that can be addressed in the
short term, and because fixing them is difficult enough

that it requires a serious research effort. (Though we’ll
need to explore many aspects of machine learning security

to achieve our goal of building safe, widely

distributed Al.)

X+€-0
y = “gibbon”
99.3% confidence

Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).



Adversarial examples

* Adversarial examples can be applied physically and are robust

NoVeEeRER2EcmnpIEHR The Phsical Worla ‘
NURIIRVASSNEleYeXeliclltelV (., Bengio™S., 2016

Din g Zhao ‘ CMU Credits: https://www.youtube.com/watch?v=zQ_uMenoBCk
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Adversarial examples

* Adversarial examples pose significant real-world threats

The adversarially added patches make the objects undetected by classifier (dodging)

Sharif, Mahmood, et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition." Proceedings of the 2016 acm sigsac conference on computer and communications security. 2016.
Ya-guan, Q. I. A. N., et al. "Spot Evasion Attacks: Adversarial Examples for License Plate Recognition Systems with Convolutional Neural Networks." Computers & Security (2020): 101826.

Thys, Simen, Wiebe Van Ranst, and Toon Goedemeé. "Fooling automated surveillance cameras: adversarial patches to attack person detection." Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 2019.

Ding Zhao | CMU >



Adversarial examples

Source: https://youtube.com/watch?v=YXy60X1iNoA
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Adversarial examples can also change prediction (impersonation / falsification)

Ding Zhao | CMU


https://www.youtube.com/watch?v=YXy6oX1iNoA
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Adversarial examples

* Adversarial examples pose significant real-world threats

i’g_‘edocoocoooco

label: bus prediction: ostrich label: stop sign prediction: - (unseen)

Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).
Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Ding Zhao | CMU !



Adversarial attacks

* Adversarial attack: performing actions to fool a given classifier
* Poisoning: injecting “poisonous” training data to weaken the model

 Evasion: finding “evaded” data points with training set and model fixed

Ding Zhao | CMU



Poisoning-type adversarial attacks

« Performed by finding data point x that is close to the target instance ¢ in

the feature space and also close to the base instance b in input space
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Credits: https://wrhuang.com/project/poison-frog/
Di ng Zhao ‘ CMU Shafahi, Ali, et al. "Poison frogs! targeted clean-label poisoning attacks on neural networks." Advances in Neural Information Processing Systems 31
(2018): 6103-6113.



https://wrhuang.com/project/poison-frog/

Poisoning-type adversarial attacks

« Performed by finding data point x that is close to the target instance ¢ in

the feature (classification) space and also close to the base instance b in
INnput space

© = argmin [|(x) - pD|13 + Bllx — bl|3

where [ is a scalar constant and ¢( - ) is some feature generator

 Note: for a vector x & [Rd, Its norm Is defined as:

[x]l, = 4/ ()P + ()P + -+ + (x)”, for some integer p > 1, and

H'XHoo_maX{‘xl‘a‘xz‘a 9‘Xd‘}
Shafahi, Ali, et al. "Poison frogs! targeted clean-label poisoning attacks on neural networks." Advances in Neural Information Processing Systems 31 (2018): 6103-6113.

Ding Zhao | CMU 10



Poisoning-type adversarial attacks

 More poisonous samples gives higher success rate

Target instances from Dog class

success rates of various experiments

- bird-vs-dog | opacity 30%
9 1.001 airplane-vs-frog | opacity 30%
C 0.75 4 —— airplane-vs-frog | opacit
v
b1 ~
@ i,
Poisons O 0.50
made for 7 0.25 -
dog class ' P
from fish 0.00 4= , ' '
bases 0 20 40 60

# poisons

Credits: https://wrhuang.com/project/poison-frog/
Shafahi, Ali, et al. "Poison frogs! targeted clean-label poisoning attacks on neural networks." Advances in Neural Information Processing Systems 31 (2018): 6103-6113.

Ding Zhao | CMU



https://wrhuang.com/project/poison-frog/

Evasion-type adversarial attacks

* Performed by adding small perturbation to input to maximize the classifier

loss function

o* = argmax L(f(x + 0;0), y)
0EA

where

- X Is the original sample,

- v is the label,

- f( - ; 0) is the targeted classifier

-A =1{0: 0|l L €} is an e-small ball

- X

X + 0* is the adversarial example

Ding Zhao | CMU
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Wong, Eric, and Zico Kolter. "Provable defenses against adversarial
examples via the convex outer adversarial polytope." International
Conference on Machine Learning. PMLR, 2018.
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Evasion-type adversarial attacks

 How to solve the maximization problem?

* For X close to x, linearization gives us
L(X,y,0) ~ L(x,y,0) + (X —x)'V_L(x, y; 0)

* \We rewrite the problem:
max L(X, y; 0) = max(x —x)'V, L(x, y; 0)
by by

s.t. || X —x|[, L €

where € > 0 is some small scalar

Ding Zhao | CMU
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Wong, Eric, and Zico Kolter. "Provable defenses against adversarial
examples via the convex outer adversarial polytope." International
Conference on Machine Learning. PMLR, 2018.
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Evasion-type adversarial attacks

* Our optimization problem: 1.0
max (X —x)'V_L(x, y; 0)
X

1. [[x — <
st |-l <e

 The solutionis X = x + € - sign(V_L(x, y; 0))
—1, z<0 0.0
wheresign(z) =<0, z=0
I, z>1

0.0

Wong, Eric, and Zico Kolter. "Provable defenses against adversarial
examples via the convex outer adversarial polytope." International
Conference on Machine Learning. PMLR, 2018.
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sign( V L(x, y; @)) has the same dimension of x; it will push X to the “corner”

14

Dmg Zhao ‘ CMU Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).



Evasion-type adversarial attacks

e Fast Gradient Sign Method (FGSM)
X=x+4¢€-sign(V,L(x,y;0))

Original Image Adversarial Image
Pred: street sign Pred: chainlink fence
with 15.9 confidence. Perturbation with 9.5 confidence.

. W ' ' A -‘.-! , P - " 3

Dmg Zhao ‘ CMU Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).

\e sign(V L(x,y; 6))
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Wong, Eric, and Zico Kolter. "Provable defenses against adversarial
examples via the convex outer adversarial polytope." International
Conference on Machine Learning. PMLR, 2018.
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Evasion-type adversarial attacks

* Can be further categorized based on:

e Information available to the attackers

 White-box: Attackers have full knowledge about the model
(architectures, parameters, gradients, etc.) and its output

e Black-Box: Attackers have no information about the model other
than its output

* Loss functions being maximized:

 Targeted attack: Attackers perturb the input image such that the
model predicts a specific target class

 Untargeted attack: Attackers perturb the input image such that the
model predict any class other than the true class

Ding Zhao | CMU
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Evasion-type adversarial attacks

Examples:

* Noise Attack (black-box, untargeted attack)
 Boundary Attack (black-box, targeted/untargeted attack)
 FGSM (white-box, untargeted attack)

* Projected Gradient Descent (White-box, targeted/untargeted attack)

Ding Zhao | CMU
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Evasion-type adversarial attacks

* Noise Attack
(black-box, untargeted attack):

Just add random noise to
an input image

Pred: street sign with 15.9 confidence

¥=x4+96, 6~ N®O,0°I

Pred: street sign with 15.9 confidence

Ding Zhao | CMU

Pred: bubble with 10.96 confidence
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Evasion-type adversarial attacks

Basic Intuition Single step
* Boundary attaCk \ o #1. random orthogonal step
starling image step towards original image
(black-box, targeted/untargeted attack): Yo ¥ step towards original fmag
rejection sampling along the -
: k> #1
boundary of adversarial & g f—
_ = #2
non-adversarial samples - ‘
= original image
) classified correctly
X = xT—l + 5T—19 x() ~ ‘/’/(096 I) classified incorrectly classified correctly

(adversarial)

-
-

Input Dimension 2

Brendel, Wieland, Jonas Rauber, and
Matthias Bethge. "Decision-based
adversarial attacks: Reliable attacks
against black-box machine learning
models." arXiv preprint
arXiv:1712.04248 (2017).

Original noise Adversarial image Original image 1 9

Ding Zhao | CMU t=r {1 =200587)



Evasion-type adversarial attacks

 Fast Gradient Sign Method Driginal image
(white-box, untargeted attack)

with 15.9 confidence. Perturbation

PN o) - N

adding adversarial noise in the
direction that maximizes
the classifier loss

X=x+4¢€-sign(V L(x,y;0)

Dmg Zhao ‘ CMU Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).

Adversarial Image
Pred: chainlink fence
with 9.5 confidence.

20



Evasion-type adversarial attacks

* Projected Gradient Descent Original Image

Pred: street sign
with 15.9 confidence. Perturbation

(white-box, targeted/untargeted attack) gz

iteratively performing FGSM to keep
iIncreasing the confidence of the

target class y*

0, = € -sign(V,L(x, y*;0))
X, =X, +0,_4

Ding Zhao | CMU

Adversarial Image
Pred: streetcar
with 12.8 confidence.

=
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Adversarial on reinforcement learing

Test-Time Execution Test-Time Execution with / wnorm FGSM Adversary

raw input raw input adversarial perturbation (unscaled) adversarial input

I sign(V,J (0, z,y)) —

output action distribution output action distribution output action distribution

Adversarial examples can attack decision making algorithms (e.g. RL agent)

Source: https://www.youtube.com/watch?v=4r KCiKHV M Huang, Sandy, et al. "Adversarial attacks on neural network policies." arXiv preprint arXiv:1702.02284 (2017). 22

Ding Zhao | CMU


https://www.youtube.com/watch?v=4r_KCjKHV_M
https://www.youtube.com/watch?v=4r_KCjKHV_M

L2ContrastReductionAttack
VirtualAdversarialAttack

DDNAttack

L2ProjectedGradientDescentAttack
LinfProjectedGradientDescentAttack
L2BasicIterativeAttack

LinfBasicIterativeAttack

L2FastGradientAttack

LinfFastGradientAttack
L2AdditiveGaussianNoiseAttack
L2AdditiveUniformNoiseAttack
L2ClippingAwareAdditiveGaussianNoiseAttack
L2ClippingAwareAdditiveUniformNoiseAttack
LinfAdditiveUniformNoiseAttack
L2RepeatedAdditiveGaussianNoiseAttack
L2RepeatedAdditiveUniformNoiseAttack
L2ClippingAwareRepeatedAdditiveGaussianNoiseAttack
L2ClippingAwareRepeatedAdditiveUniformNoiseAttack
LinfRepeatedAdditiveUniformNoiseAttack

InversionAttack

Other adversarial attacks

o Attacking methods are (still) actively developed

Reduces the contrast of the input usin;
Second-order gradient-based attack or
The Decoupled Direction and Norm Lz
L2 Projected Gradient Descent

Linf Projected Gradient Descent

L2 Basic Iterative Method

L-infinity Basic Iterative Method

Fast Gradient Method (FGM)

Fast Gradient Sign Method (FGSM)
Samples Gaussian noise with a fixed LZ
Samples uniform noise with a fixed L2
Samples Gaussian noise with a fixed L
Samples uniform noise with a fixed L2
Samples uniform noise with a fixed L-ir
Repeatedly samples Gaussian noise wi
Repeatedly samples uniform noise witl
Repeatedly samples Gaussian noise wi
Repeatedly samples uniform noise witt
Repeatedly samples uniform noise witl

Creates “negative images” by inverting

Source: https://foolbox.readthedocs.io/en/stable/modules/attacks.html

Ding Zhao | CMU

BinarySearchContrastReductionAttack
LinearSearchContrastReductionAttack
L2CarliniWagnerAttack
NewtonFoolAttack

EADAttack

GaussianBlurAttack

L2DeepFoolAttack

LinfDeepFoolAttack
SaltAndPepperNoiseAttack
LinearSearchBlendedUniformNoiseAttack
BinarizationRefinementAttack
DatasetAttack

BoundaryAttack
LeBrendelBethgeAttack
L1BrendelBethgeAttack
L2BrendelBethgeAttack
LinfinityBrendelBethgeAttack

FGM

FGSM

L2PGD

LinfPGD

PGD

Reduces the contrast of the input usin;
Reduces the contrast of the input usin;
Implementation of the Carlini & Wagn¢
Implementation of the NewtonFool At
Implementation of the EAD Attack wit
Blurs the inputs using a Gaussian filter
A simple and fast gradient-based advel
A simple and fast gradient-based advel
Increases the amount of salt and peppr
Blends the input with a uniform noise i
For models that preprocess their input
Draws randomly from the given datase
A powerful adversarial attack that reqt
LO variant of the Brendel & Bethge ad\
L1 variant of the Brendel & Bethge ad\
L2 variant of the Brendel & Bethge ad\
L-infinity variant of the Brendel & Beth
alias of foolbox.attacks.fast_gradient
alias of foolbox.attacks.fast_gradient
alias of foolbox.attacks.projected_gra
alias of foolbox.attacks.projected_gra

alias of foolbox.attacks.projected_gra

23


https://foolbox.readthedocs.io/en/stable/modules/attacks.html

Physical adversarial attacks

» (Goal: given an image x, we want to flip the classifier prediction from y to
another class y™.

» Perturbing only part of the image: use filter M as a mask/filter

min L(x + M, © 0,y,y*;0) + A||M. © 9]

s P

where © denotes element-wise multiplication

Original image Masked perturbation Perturbed image

Ding Zhao | CMU
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Physical adversarial attacks

 Add physical constraints:

» Transformation: apply 7( - ) to the masked perturbation

min L(x + T(M, © o), y™;0) + A||M, © 0|

P P

Masked perturbation Transformed masked perturbation Original image Transformed masked perturbation

TM, © 5)

Ding Zhao | CMU

Perturbed image

x+TM_ 0O o)

25



Physical adversarial attacks

 Add physical constraints:

» Penalizing for non-printable perturbation (VPS penalty):

minA||M, - 6|, + L(x + T(M, - 9),y*; 0) + NPS
5

Given a set of printable colors (RGB triples) P and a set
R(6) of (unique) RGB triples used in the perturbation that
need to be printed out in physical world, the non-printability
score 1s given by:

NPS@)= > ][] Ip-7| (1)
peR(S) p'EP
A high NPS low NPS
D' Zh ‘ CM U Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification." Proceedings of the IEEE Conference on 26
Ing ao Computer Vision and Pattern Recognition. 2018.



Physical adversarial attacks

 Examples:

S » Subtle Poster Camouflage

Distance/Angle Subtle Poster Right Turn Graffiti
o ‘
o ‘
o n

Targeted-Attack Success 100% 73.33% 66.67%

DI n Zh 20 ‘ CM U Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification." Proceedings of the IEEE Conference on
g Computer Vision and Pattern Recognition. 2018.



Adversarial examples in autonomous driving

* Adversarial examples can fool autonomous vehicles perception systems

 90EONEMNNIDOe0NNOeeeNe®e e e e

Morquilis, Nir, et al. "Fooling a real car with adversarial traffic signs." arXiv preprint arXiv:1907.00374 (2019). 28

Ding Zhao | CMU



Adversarial examples in autonomous driving

» Success rate of logo-based attacks

Logo Attacks

Road work . 0.58
Bumpy road 0.53

Others -

Yield |GGG 048

Bicycle Crossing |l 0.59
No entry [il} 0.82
Others |

Custom Sign Attacks

Original
¥ =
Priority road || N N 0.99
Speed limit (30) | N 0.98
| Stop | 1.00
‘ n/a
¥ o E
Priority road | NG 0.99
Speed limit (30) | 0.98
| Stop | 1.00
‘ n/a

Ding Zhao | CMU

-

=)

Adversarial

Stop NG .00

n/a
n/a
n/a

No overtaking _ 1.00

n/a
n/a
n/a

Adversarial
L 4
Speed limit (30) | NG .00
t&l Priority road i} 0.92
‘ .1@ ‘ Speed limit (50) |§ 091
Others |
N
=
‘ Stop IIEEGEGE .00
"‘I-., Priority road | 0.96
n/a
7 SRR~

Real

Stop NG 1 .00

n/a
n/a
n/a

No overtaking || G .00

n/a
n/a
n/a

Speed limit (30) | AN 1 00

n/a
n/a
n/a

Stop |GG | 00
n/a
n/a
n/a

Sitawarin, Chawin, et al. "Darts: Deceiving autonomous cars with toxic signs." arXiv preprint arXiv:1802.06430 (2018).
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Adversarial examples in autonomous driving

 |llustration of attacks in image spaces

Ding Zhao | CMU

Complete space of 32 x 32 RGB images

[n-distribution decision boundary .-

Class:
Turn right

classification

-~

" "Low
confidence,
inconsistent

classification

v

h

Out-of-

ﬁ/?’\,

Out-of-distribution decision boundary

Low confidence.

Class: No : . il
inconsistent classification

vehicles

Class: Stop

IndDistribution .
(Adversarial 0 - Qu(-of-
: ffic Sio aces DiStribution
High = Traffic Sign) High Class: )

. ar = : e (Logo)
confidence, @ yttack confidence,| Yi€ld attack
consistent : @ | consistent

classification Class: No
overtaking

Class: Speed

- | Class: Speed
limit (30)

Class: Speed limit (120)

. ‘ consistent

|
, )
; L‘.@A

classification

Sitawarin, Chawin, et al. "Darts: Deceiving autonomous cars with toxic signs." arXiv preprint arXiv:1802.06430 (2018).

limit (80) Class: ... High confidence,
Distribution consistent

(Custom Sign) _.-~ High Space of 32 x'32 RGB . classification
attack .~ Zg n confidence, images of traffi¢-signs S
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Adversarial examples in autonomous driving

* Pipeline:
a) Take a high-resolution image
b) Scale down for easier attack
c) Find adversarial perturbation

within Lp neighborhood

Classifier f(x)

d) Scale Up the perturbati()n Attack target ¥

then add to original image

Morqulis, Nir, et al. "Fooling a real car with adversarial traffic signs." arXiv preprint arXiv:1907.00374 (2019). 31

Ding Zhao | CMU



The generality of adversaries

* Adversarial examples are generalizable across models and architectures

ACROSS MODELS (SAME ARCHITECTURE)
Success percentage

E.g. Adversarial
samples from
DNN B has 75%
success rate
attacking DNN C

A, B, C, D, E are
models trained
with the same
method with
different datasets

ACROSS ARCHITECTURES
Success percentage

o DNNp 38.27 8.36 20.72 -
=
c
S
,“_’ LRt 6.31 11.29 | 44.14 -
(@)
= C
= c
o o
g L SvMr 2,51 5.19 15.67 -
o =
W =
©
s DT+ 0.82 3.31 5.11 -
)
e
S
DNN: | net k
D (NNF 11,75 | 42.89 41.65 31.92 { DN deepneurainetworks
LR: logistic regression
' . . \ SVM: support vector machines
C DNN LR SVM DT kNN EnS. DT decision trees
Target DNN Target Machine Learning Technique kNN: k-nearest neighbors
Ens: ensemble models
Papernot, Nicolas, Patrick McDaniel, and lan Goodfellow. "Transferability in machine learning: from phenomena to black-box attacks using adversarial 3 2

Dl n g Zh 20 ‘ C M U samples." arXiv preprint arXiv:1605.07277 (2016).
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Adversarial examples are not bugs, they are features

 World 1: Adversarial examples exploit directions irrelevant for
classification (“bugs”). In this world, adversarial examples occur because
classifiers behave poorly off-distribution, when they are evaluated on inputs
that are not natural images. Here, adversarial examples would occur In
arbitrary directions, having nothing to do with the true data distribution.

World 2: Adversarial examples exploit useful directions for classification
(“features”). In this world, adversarial examples occur in directions that are
still “on-distribution”, and which contain features of the target class. For
example, consider the perturbation that makes an image of a dog to be
classified as a cat. In World 2, this perturbation is not purely random, but has
something to do with cats. Moreover, we expect that this perturbation
transfers to other classifiers trained to distinguish cats vs. dogs.

There are still argument about this ..

https://distill.oub/2019/advex-bugs-discussion/ 33



Defending against adversaries

* [he adversary generality means we cannot simply hide the model

o attackers may use a substitute model and still have with a high success
rate

* this is what makes adversarial defense challenging

(a) Defended model (b) Substitute model
A A
h(z") |- == -e- FO=-9  [eeeeeeees O~ <
bl Lo TS~
h(z) |—-<3 e 4
. - : -
r x” T x”
<> <
T T

Source: https://openai.com/blog/adversarial-example-research/

Ding Zhao | CMU
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Adversarial defenses

* [o make the model more robust, we want to push the decision boundary
of f further away from the data points

. ‘E 3' - '. :

] s ] -

0.9 - Lo

1.0

.0 0.5 1.0 0.0 0.5 1.0
Less robust model More robust model
(can easily find adversarial examples (no adversarial examples
within the samples neighborhood) within the samples neighborhood)

Wong, Eric, and Zico Kolter. "Provable defenses against adversarial examples via the convex outer adversarial polytope." International Conference on Machine Learning. PMLR, 2018.

Ding Zhao | CMU 39



Adversarial defenses

 Method 1: minimize the worst-case loss by adversarial training

min Ey yy g |max L(A(X + 0;0),Y))
0 ’ sEA

Procedure:
e find adversarial examples
* append adversarial examples into the training set
* train the model with the new training set

* Challenges: attackers may use many ways to define the loss function, e.g. L-1,

| -2, L-00. Need to cover them all.

Ding Zhao | CMU 36



Adversarial defenses

 Method 2: regularize using FGSM
L(x,y;0) = al(x,y; 0) + (1 — a)L(x + € - sign( VL,(x, y; 6)), y; 0)

\ -

FGSM adlv. example

 Method 3. use randomized smoothing
A A

. " N
" "

Data pOIth \ijlus 60 ..‘ - ...

*
*
N *
L
-
-
.
.
" = a = - :
. = . H
R ¢« @ [} .
. *
*
s . L L 4 L
. > .

RN €>€o
? > >
Incorrect class f(x) g(x) = argmax PGNN(O,G2I) [f(:l: +e€) = y]

Correct class J

Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).
Cohen, Jeremy M., Elan Rosenfeld, and J. Zico Kolter. "Certified adversarial robustness via randomized smoothing." arXiv preprint arXiv:1902.02918 (2019).

Ding Zhao | CMU



Adversarial defenses

 Smoothing via randomized padding

Input Image  Resized Image Padded Image

X, X! X

y
\

- N\ 7 N

l

----q

- -
= CNN

--------_

!
\----

— CNN
Classification
\
\
I
Random Random Randomly
Resizing Padding Select One
Layer Layer Pattern

. Xie, Cihang, et al. "Mitigating adversarial effects through randomization." arXiv preprint arXiv:1711.01991 (2017). 38
Ding Zhao | CMU ) gating 9 prep 2017)



Building trustworthy models

* Adversarial training regularizes and improves and generalization

Clean examples . Adversarial examples

1.0 (—%
i e @ [ = @ 2
S 9
o o S 8
g | § |
0.5 ° ° o * 5 5
» | © K
O N
o O § 0.0782% error on MNI TC
o ® o ® =
o ) w g 0
O a a 0 @ w0 w0 W ;;o‘J S
% 4 05 1.0 0.0 05 1.0 Training time (epochs)
Reqular training: Adversarial training: L.
pr%ne to smalglJ more regularizedg Bett?r generallza’qon o_bsgrved
perturbation and more robust arter adversarial training

Wong, Eric, and Zico Kolter. "Provable defenses against adversarial examples via the convex outer adversarial polytope." International Conference on Machine Learning. PMLR,
2018.

Ding Zhao | CMU 39



* The loss of could be highly
non-smooth w.r.t.
translation & rotation
parameter space

MNIST CIFAR-10 ImageNet

* Adversarial training
can help smoothen
the loss in even In this
space

40

Di ng Zhao ‘ CMU Engstrom, Logan, et al. "Exploring the landscape of spatial robustness." International Conference on Machine Learning. PMLR, 2019.



Use of adversarial examples for Al safety

Adversarial examples give us some traction on
AI safety

When we think about the study of Al safety, we usually think about some of the most
difficult problems in that field — how can we ensure that sophisticated reinforcement

learning agents that are significantly more intelligent than human beings behave in
ways that their designers intended?

Adversarial examples show us that even simple modern algorithms, for both

supervised and reinforcement learning, can already behave in surprising ways that we
do not intend.

« Example:
We will revisit this paper Ea
again in the reinforcement
learning session

OpenAl, “Attacking Machine Learning with Adversarial Examples”, 2017
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Summary

 Why should we care about adversarial learning?
 Adversarial attack approaches

* Poisoning, Evasion

 White-box and black-box attacks

» Case study: adversarial examples in self-driving
 Adversarial defense approaches

* Building trustworthy models

e Next: Probabilistic robustness
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Worth Reading

 Robust physical attack:
Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual

classification.” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018.

o Certifiable robustness:
Cohen, Jeremy M., Elan Rosenfeld, and J. Zico Kolter. "Certified adversarial

robustness via randomized smoothing.” arXiv preprint
arXiv:1902.02918 (2019).
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